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schemes. Through numerical tests of the nonlinear Landau damping and two-stream insta-
bility, we compared the present scheme with other schemes such as the Spline and CIP
ones. We mainly investigated the conservation property of the L1-norm, energy, entropy
and phase space area for each scheme, and demonstrated that the IDO-CF scheme is capa-
ble of performing stable long time scale simulation while maintaining high accuracy. The
scheme is based on an Eulerian approach, and it can thus be directly used for Fokker-
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IDO scheme Planck, high dimensional Vlasov-Poisson and also guiding-center drift simulations, aiming
Conservative form at particular problems of plasma physics. The benchmark tests for such simulations have
Entropy production shown that the IDO-CF scheme is superior in keeping the conservation properties without

causing serious phase error.
© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The Vlasov equation describes the evolution of the distribution function in phase space in collisionless plasmas with no
dissipation. The Vlasov-Maxwell and/or the Vlasov-Poisson equation system have been intensively investigated in studying
various linear and nonlinear plasma dynamics where kinetic effects such as wave-particle interaction play an important role
[1-4]. Contrary to a particle approach such as Particle-In-Cell method [3,4], the Vlasov approach, which directly solves the
distribution function by discretizing the phase space, requires a large amount of computer resources, especially when the
dimension of the phase space becomes higher. However, the Vlasov approach is superior in reducing numerical noise com-
pared with the particle one. Furthermore, it is easier to introduce dissipation such as collision as well as source/sink terms,
which are important in studying long time scale plasma dynamics as an open system. Because of these advantages, the
Vlasov approach has become widely accepted in such researches as magnetically confined fusion plasmas [5-8], laser
produced plasmas [9], astrophysical plasmas [10], etc.

Several numerical schemes have been developed for solving the Vlasov equation. Cheng and Knorr [11] originally intro-
duced a splitting scheme which solves the Vlasov equation based on the Semi-Lagrangian approach by separating the con-
vection dynamics along each coordinate in phase space. This scheme belongs to one of the explicit symplectic time
integrations [12] which ensure the conservation of system energy. However, numerical diffusion originating from the inter-
polation of the physical quantities among grids is another problem. Recently, the CIP (Constrained Interpolation Profile)
scheme [13,14], in which not only the distribution function f, but also its phase space derivatives, i.e., 9f /0x and of /ov
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are traced, has been applied for solving the Vlasov-Poisson equation system by incorporating it with the splitting scheme
[15]. This scheme is efficient in reducing numerical diffusion while keeping the third-order numerical accuracy. As a result,
a small number of mesh points can successfully reproduce the fundamental phase space dynamics like particle trapping and
associated vortex formation with high accuracy. However, the scheme is hardly applied to a problem that includes dissipa-
tion and/or source/sink terms due to the nature of the Semi-Lagrangian approach. Furthermore, when the convection veloc-
ity is a function of a configuration space coordinate such as E x B motion in plasmas, a phase error associated with the
convection was found to occur [16].

Recently, an alternative approach referred to as the IDO (Interpolated Differential Operator) scheme [17,18] has been
developed in the CFD (Computational Fluid Dynamics) field. In this scheme, physical quantities, such as density, velocity,
etc., are replaced by local interpolation functions determined from those values and their spatial derivatives on each grid
point, so that the differential operators in fluid equations are analytically treated. Then, time integration can be performed
based on an Eulerian approach such as the Runge-Kutta method. The IDO scheme has been applied to various CFD problems
and found to be efficient in capturing a fine scale structure in multi-dimensional fluid problems [19]. Furthermore, a conser-
vative counterpart referred to as the IDO-CF scheme [20], which uses the integrated values of the physical quantities to
determine the interpolation function, has been developed. This scheme ensures rigorous conservation for the integrated va-
lue over the whole system, so that it can be applied it to the problems that require long time scale simulation. The IDO-CF
scheme is close to the conservative PSM scheme [21] which solve the equation as an integral form by using the line-inte-
grated values, although the integrated values do not time-integrated as an independent variable in the PSM scheme.

Based on these advantages in multi-moment schemes, we here, for the first time, introduce the IDO-CF scheme for the
Vlasov-Poisson equation system. The distribution function in phase space is now replaced by local interpolation functions
along each coordinate in phase space, so that the convection and acceleration terms in the Vlasov equation are analytically
discretized. In the IDO-CF scheme, the total particle number is rigorously conserved by using the line-integrated and also
cell-integrated values in constructing the interpolation function. Based on this scheme, we have developed a Vlasov code
which is one-dimensional (1D) in configuration space and 1D in velocity one, and applied it to the problems of the nonlinear
Landau damping and two-stream instability. We have investigated the conservation property of the scheme in terms of the
L1-norm, energy, entropy and phase space area through comparison with other schemes such as Spline and CIP ones. Note
that the conservation of the phase space area is a direct consequence of the Liouville theorem for the distribution function in
Hamiltonian dynamics, and the entropy is a measure of the higher order moment related to the fine scale structure in phase
space.

The IDO-CF scheme shows excellent stability and is highly accurate in maintaining the conservation of the L1-norm and
total energy over many bounce periods of trapped particles. On the other hand, the entropy and phase space area increase by
a certain amount in all schemes during the initial trapping phase and coalescence process of vortices where complicated
stretching and folding dynamics of distribution function take place [22-24]. Such increase originates from the vortex forma-
tion in phase space and associated trapping dynamics of particles due to a finite amplitude wave. Namely, during this
process, infinitesimally small numerical dissipation causes stochastic motion of particles near the separatrix so that a
coarse-grained distribution function is created [25]. Such an ergotization corresponds to the increase of the entropy and
phase space area. Once such a distribution is established, the increases of the entropy and phase space area saturate and tend
to converge to asymptotic values. This state is considered to be a quasi-stable BGK solution [1]. It has been pointed out that
the microscopic resolution influences the macroscopic dynamics [26,27].

In order to study this aspect, we have performed a simulation that imposes a symmetric constraint to the initial
distribution by keeping only even parity modes and investigated how the symmetric structure in phase space
f(x,v) =f(—x,—v) is preserved during the simulation [9]. It was found that the symmetric structure is precisely kept even
after complex vortex merging, which is accompanied by the increase of entropy, takes place. This suggests that the ergoti-
zation process does not directly influence the symmetry of the distribution function, which is one of the most primitive
macroscopic dynamics.

The IDO-CF scheme can be straightforwardly extended to a simulation including dissipation and also sink/source
terms since the scheme is based on an Eulerian approach. As an example, we have performed a simulation which includes
the collisional effect. In this simulation, the entropy increases physically, and the L1-norm and energy remain almost
constant due to the smoothing of the distribution function, which effectively increases the numerical accuracy for a given
mesh size.

Moreover, it can be also extended to high dimensional Vlasov-Poisson simulations even when the velocity depends on
configuration space coordinates. As benchmark tests for such simulations, we have performed a 4D Vlasov-Poisson simula-
tion in phase space and also a 2D guiding-center drift simulation in real space where the velocity depends on the spatial
coordinate via E x B drift motion. In these cases, the linear growth rate is well in agreement with the theoretical one, and
the conserved quantities such as mass, energy and enstrophy are kept almost constant without causing serious phase error.

The reminder of this paper is organized as follows. In Section 2, we briefly describe the IDO-CF scheme and apply it to the
two-dimensional Vlasov-Poisson equation system. In Section 3, we present the numerical results of the nonlinear Landau
damping and two-stream instability, and discuss the numerical accuracy and stability from the view point of long time scale
simulation. The present scheme is then applied to a Fokker-Planck, a high dimensional Vlasov-Poisson and also a guiding-
center drift simulations, aiming at particular problems of plasma physics in Section 4. Finally, the concluding remarks are
given in Section 5.
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2. IDO-CF scheme and its application to the Vlasov-Poisson equation system

In Section 2.1, we briefly review the IDO-CF scheme [20] which has been applied in the CFD field. In Section 2.2, we then
introduce this scheme to solve the Vlasov-Poisson equation system in two-dimensional phase space (x, v). Here, we have
adopted two numerical methods to evaluate the nonlinear terms in the Vlasov-Poisson equation system.

2.1. IDO-CF scheme

Here, we explain the formalism of the IDO-CF scheme based on a simple 1D advection equation:
of(t.,x)  o{uf(t.x)}
ot * X =0, (1)
where u is the convection velocity which satisfies du/dx = 0. The space x and function f(x) are discretized as x; = iAx, and
fi = f(x;) with an equal mesh size Ax = L,/N,, where L, and N, are the spatial periodic length and the number of mesh points,
respectively. In the conventional non-conservative IDO scheme, i.e., IDO-NCF scheme [17], the interpolation function of f(x)
between x; and x;,; is constructed via a cubic Hermitian polynomial function as

Fxfiofisr i feinn) = a(x = x0)° + b(x = x)* + c(x —xi) +d, (2)
where the coefficients are determined from the four conditions as F(x;) = f;, F(Xi;1) = fii1, (OF(x)/0x),_,, = fui and

(BF(X)/(?X)X:)‘H] :f;(:i+1 .
On the other hand, in the IDO-CF scheme, instead of the derivative values at grid points, we introduce cell-integrated val-
ues between x; and x;. 1 given by

Xiv1
piy= [ feodx 3)
and employ the value to construct the interpolation function as
F:fifir, pig) = a.(x - X))+ b, (x—x)+c,. (4)
Here, F(x) is the quadratic function and the coefficients are determined by using three conditions,
F(xi) = f; (3)
F(Xii1) = fisn, 6)
Xit1
F(X)dX = pi+%7 (7)
as follows:
3(fi+fin) Piy
“=TAae T Ae
b 22 +fin)  OPiy (8)
T Ax Ax2
. =f.

When u < 0, namely, the profile f(x) is convected to the negative x-direction, we utilize this interpolation function for the
upwind discretization of spatial derivatives as
of 7]
f:*;f = & =~ aF(X;ﬁv.ﬁ#th%)‘x:xi‘ (9)

X=X;

In the case of u > 0, we interpolate the distribution function to the positive x-direction as

F(x:fi.fio1, piy) = a-(x —x)? +b_(x—x) +c_, (10)
where
g 3itfi) 6Py
T Ax? Ax3
p _2Cfitfin) 6p;_, (11)
- Ax Ax2
C_ :ﬁ7

and evaluate the spatial derivative by using Eq. (10) instead of Eq. (4). Then, the time derivatives of the distribution function
and its cell-integrated value are determined as

f[:i = _uf;(:ia (12)
Puizy = il ~F). (13)
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According to Eqgs. (12) and (13), we can time-integrate these two variables by using some numerical procedures such as the
Runge-Kutta method. Note that Eq. (13) is expressed as a flux form, so that Zﬁ*l Pisy is rigorously conserved. In Ref. [20], the

Fourier analysis of the IDO-CF scheme coupled with the Runge-Kutta scheme is performed to evaluate the stability and accu-
racy. The IDO-CF scheme provides accurate phase for a wide range of wave numbers, and gives less dissipative solutions than
the third-order upwind finite difference scheme (FDM). Thus the present scheme is superior in investigating the problems
that require a long time scale simulation. On the other hand, the CFL condition is limited in a finite Courant number same as
the other Enlerian schemes. For example, the Courant number is estimated as 0.42 in the case of the 1D advection equation
to which the second-order upwind IDO-CF and the fourth-order Runge-Kutta schemes are applied.

2.2. Application of the IDO-CF scheme to the Vlasov-Poisson equation system

We applied the IDO-CF scheme to the Vlasov-Poisson equation system, which is the advection equation of the distribu-
tion function in phase space. Here, we consider a simple two-dimensional phase space (x, 2), i.e., 1D in configuration space
and also 1D in velocity one. In this case, the normalized forms of the Vlasov-Poisson equation system are described as
follows:

of (t,x, v) 0{yf (t,x,0)} HEWX)f(t,x,v)}
ot ox v =0, (14)

0Eéix):—{1jf(t,x, z/)dv—l}, (15)

where dv/dx = 0 and dE(x,t)/dv = 0 are satisfied. The Vlasov equation can be seen as the continuity equation for the distri-
bution function transported by incompressible Hamiltonian flows in phase space so that the IDO-CF scheme can be directly
applied to this system. Here, a rectangular mesh is used to discretize the phase space with the computational domain
R={(x,v)||x| <0.5L,|v| < Vma}, when L, is the spatial periodic length and V. is the cutoff velocity. The space x, velocity
v and function f(x, v) were discretized as x; = —0.5L +iAX, vj = —Vy+jAv and fi; = f(x;, v;) with an equal mesh size
Ax = L;/Ny and Av = 2V e /N,, where N, and N, are the number of mesh points used along the x and v directions, respec-
tively. The discretization forms of the two-dimensional Vlasov equation and its line/cell-integrated ones are given as follows:

Jrij = = Vifxij + Eifvij, (16)
Xit1
Pty = —olis =f)+ [ EGf (v (17)
Vi1 ’

Crijry = */ vfi (i, v)dv + Ei(fiji1 — fij), (18)

Yj
Viy1 * Vi1 X1 Xi1
Miigja = —/ vf (X1, v)dv +/ of (x;, v)dv + / E(x)f (x, vj;1)dx — E(x)f (x, vj)dx, (19)
v; v; X; X;
where we define the line-integrated value along the x and v directions as

X1

Piyj = » f(x, vy)dx, (20)
Vj+1

Ci_j+§ = f(Xh U)di/, (21)

Y

and also the cell-integrated one as
it fXipn
Miyj. = /U ; f(x,v)dxdv. (22)
Jo; :

The electric field on each mesh point E; = E(x;) is determined from the discretized poisson equation:

¢i+l 24’1 + ¢1 1 Z Ct 1J+2 ’ (23)
_ ¢1+1 ¢’1 1
£= - (24)

It is noted that the numerical integration in the right hand side of Eq. (23) is performed by using the line-integrated values.
This calculation is more rigorous compared with the other numerical integrations such as trapezoid and Simpson ones. It is
possible to apply more accurate Poisson solver such as the fourth-order discretization by introducing the line-integrated sca-
lar potential and the Fourier solver to the left hand side of Eq. (23). However, we have only used the conventional second-
order central FDM for the Poisson equation in this paper, since there is no qualitative change regardless of the Poisson solver
in some numerical tests.
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In the following, we show the case of v; < 0 and E; > 0. The interpolation functions for the upwind discretization of f(x, v)
along the x and v directions are constructed as

FO6 Sy finjs pragy) = A= %) +b(x = xi) + € (25)
with
q— 3(fij +fir1j) _ 6/),4%\,‘
Ax? Ax3
b _ 202fij + fier)) n 6Pi+%1 (26)
N Ax Ax2
c :ﬁ]
and
G(v:fijfisin ) =PV = 1) +q(v - v)) + 1 (27)
with
_3(f+fun) Gy
P=="R vz " A
_2(2fij +fig) N 64ij. (28)
Av Av?’
1= fij,
respectively. Then, f,;; and f,;; in Eq. (16) are determined by using these interpolation functions as
of 13}
xij = 7o ~ —F(X; fijs fiv1js Pii1) x> 29
& OX|(xo)—yy)  OX (%ifigpfisrjs Pisyi) s (29)
of 7]
ij = A ~ —G(v; fij, fijr, Gjen) ey - 30
& Tov (*.0)=(x;,v;) ov (v J f"“ C’\’*%)'” Y (30)

Here, we introduce two numerical methods for performing the integration in Egs. (17)-(19). One is a simplified version that
replaces the velocity and electric field in the integrand with the average ones as follows:

Vi1 Vi1
/ " o, v)do ~ z;/ "R, )dy = D), (31)
v; v;
Xiv1 _J Xiv1 —
EOx, ) =E [ L )dx=Epy.y; (32)
X X;
where 7 and E denote the averaged velocity and electric field between grids as
Vit . .
7= / " vdoap = Y (33)
y 2
O s _ b=
E= A E(x)dx/Ax = A (34)

The other is a more strict version that replaces the distribution functions in the integrand with the interpolated ones as
follows:

Vj+1 Vj+1
/ vfi(xi, v)dv = / VG(V; fuijs fuije Gy AV, (35)
jxm ' X1
E(Ofo(x, vj)dx = / EQOF(X: foij foisrs Puig ) 0X- (36)
Xi Xj
Here, Ceijag in Egs. (31) and (35) and P uisl in Egs. (32) and (36) are calculated through
a v
Ceijey = &F(X% Gijun G Micg o) s (37)
7]
Poinlj = ED G(v; Pisljr Pirjs Mi+%j+%) | v=v;> (38)

respectively. E(x) in Eq. (36) is determined by using third-order central interpolation. In this paper, we refer to the former
scheme as the IDO-CF1, and the latter one as the IDO-CF2. Note that both schemes conserve the total particle number:

Nx Ny

N=>" ZMH% il (39)

iz j=1

by using Eq. (19).



8924 K. Imadera et al./Journal of Computational Physics 228 (2009) 8919-8943
3. Numerical simulations of the Vlasov-Poisson equation system

In this section, we applied the IDO-CF scheme to two-dimensional Vlasov simulation of the nonlinear Landau damping
(Section 3.1) and two-stream instability (Section 3.2). We focused on studying the accuracy and efficiency of the scheme
by comparing it with other numerical schemes such as the Spline and CIP ones. Besides the L1-norm and energy conserva-
tion, we investigated the conservation property of the entropy and phase space area occupied by the distribution function,
which are related to Liouville’s theorem and are important measures in identifying the complex dynamics in phase space.

3.1. Nonlinear Landau damping

First, we investigated the nonlinear Landau damping (NLD) with the initial condition:

1 v? 2
ft=0,x,v) mexp( 2><1+Bcos L x), (40)
where L, = 47, Vi = 10, (Ny,N,) = (64,1023), At =5 x 1072 and the perturbation amplitude B = 0.5 were chosen as a
typical case. In this paper, we use the fourth-order Runge-Kutta scheme in the time integration, since higher-order Run-
ge-Kutta scheme can enlarge Courant number limitation [20] whereas the contribution to the numerical accuracy is small.
This has been studied in numerous reports in the literature [11,15,16,21-23,27] as a fundamental test of the collisionless
Landau damping and subsequent nonlinear evolution of the electrostatic field dominated by wave-particle interaction.
The time history of the field energy for the IDO-CF2 scheme is shown in Fig. 1(a1) and (a2), where (al) is the evolution
of a short time scale (0 < t < 200), and (a2) a longer time scale (0 < t < 1000). The short time scale evolution is in good
agreement with the results given in the literature, i.e., the exponential damping of initial electrostatic field perturbation, sub-
sequent growth and saturation due to particle trapping, and bounce motion in phase space. The real frequency and phase
velocity of the plasma wave, which are given as w ~ 1.42 and v,, = w/k ~ 2.8, agree with those obtained from the disper-
sion relation.

The distribution functions in phase space are shown in Fig. 2, which are plotted using a linear scale at six different stages.
The distribution functions using a logarithmic scale are also shown in Fig. 3, where the region of f > f,;,, = 1072 is shaded.
Hereafter, we regard the shaded region as an approximate phase space area occupied by the distribution function

At) = / /f}fmm dxdv. (41)

Note that the phase space area is conserved, i.e., dA/dt = 0, as far as the system follows the Hamiltonian dynamics and/or
equivalently Liouville’s theorem. During the initial damping phase of the electrostatic field (0 < t < 20), ballistic modes
which cause tilted zonal structure are found to be excited, as seen in Fig. 2(b) and (c). This structure results from the particle
acceleration due to the initially applied strong electrostatic field. Then, the distribution becomes unstable to plasma wave so
that the field energy grows and then saturates due to the particle trapping (20 < t < 40), as shown in Figs. 1(a) and 2(d).
After the saturation, bounce motion along the separatrix causes amplitude oscillation as seen in Figs. 1(a) and 2(d)-(e).
The period of the bounce motion at the quasi-steady state is estimated as T, ~ 40 from Fig. 1(a), which is approximately

the same as the theoretical one T, ~ 27+/m/eEgk ~ 41.9. Here, we have employed k = 0.5 and E, ~ 0.045. It was observed

that the zonal structure due to the ballistic mode becomes finer with time and ultimately disappears, as seen in Fig. 2(f).

Next, we investigated the time histories of the kinetic energy, field energy and also total energy E(t) for the IDO-CF2
scheme in Fig. 4(a) and those of Ae = [E(t) — E(0)]/E(0) for four different schemes in Fig. 4(b) in an initial time interval
(0 < t < 30). Note that the constraint for the total particle number is imposed in the present four schemes, namely
Zﬁxl Z}’-\’Z”lﬁ_ijAv is kept constant for the Spline/CIP schemes and N defined by Eq. (39) for the IDO-CF1/IDO-CF2 ones, so that
the energy conservation is relatively high for all four schemes with no secular increase after t ~ 5. On the other hand, the
total energy error of the IDO-NCF scheme (not shown in Fig. 1) does not saturate, but slightly increases. This originates from
that the mass conservation is not ensured for the IDO-NCF scheme. The IDO-CF2 scheme shows a higher accuracy than the
Spline, CIP and IDO-CF1 schemes in the initial phase (0 < t < 5), where the initially applied large amplitude wave causes a
strong particle acceleration. This results from the fact that the constraint for the IDO-CF scheme corresponds to rigorous par-
ticle conservation, whereas that of the Spline/CIP scheme is an approximate one, which is equivalent to rectangular
integration.

The time history of the variation of the discretized L1-norm defined by Am = [M(t) — M(0)]/M(0) is shown in Fig. 1(b),
where M(t) = Y0, JN: “ fij|. Note that Am represents the ratio of the negative value of the distribution function to the whole
one since the total particle number is conserved for all schemes. The L1-norm in the Spline scheme increases from early non-
linear phase around t ~ 15. This is due to the fact that the Spline scheme exhibits numerical oscillation for short wavelength
components. However, the numerical oscillation tends to be diminished due to numerical diffusion, and then the L1-norm
comes back to the initial value after several bounce periods. Note that the relative error of the L1-norm is about 6.63 x 107>
at t = 1000. On the other hand, although multi-moment schemes such as the CIP, IDO-CF1 and IDO-CF2 ones also show the
increase of the L1-norm, the ratio is small, as seen in Fig. 1(b). This demonstrates an advantage of the multi-moment schemes
in reducing numerical oscillation and maintaining stability for a long time scale Vlasov simulation.
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Fig. 1. Time evolution of field energy for the IDO-CF2 scheme in (al) a short time scale (0 < t < 200) and (a2) a long time one (0 < t < 1000). Time
evolutions of the deviation from the initial values of (b) L1-norm, (c) entropy and (d) phase space area for different numerical schemes (Spline, CIP, IDO-CF-1
and IDO-CF-2). Both the short time scale (0 < t < 200) ((b1), (c1) and (d1)) and long time scale (0 < t < 1000) ((b2), (c2) and (d2)) are illustrated.

Next, we investigate the entropy S defined by

S(¢) z//f(t,x, v)Inf(t,x, v)dxdv (42)

and also the phase space area A defined by Eq. (41). The entropy is conserved, i.e., dS/dt = 0, for the Hamiltonian dynamics
system. Fig. 1(c) and (d) shows the time history of As = {S(t) — S(0)}/S(0) and Aa = {A(t) — A(0)}/A(0), respectively. It was
found that As and Aa exhibit a similar tendency as they are kept constant up to around t ~ 15, where the field energy damps
down to the minimum level, but starts to increase (or deviate) just after the field energy exponentially grows due to the on-
set of the instability (see Fig. 1(a)). They keep increasing, and then saturate at around t ~ 150. The time interval causing sat-
uration roughly corresponds to the four bounce periods from the onset of the instability. These results show that the entropy
and phase space area are linked to each other. Note that the total energies are almost kept constant for all three schemes.
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Fig. 2. Contour plots of the distribution function (linear plot) in phase space at six different snap times: (a) t =0, (b) t = 5, (c) t = 20, (d) t = 40, (e) t = 80
and (f) t = 1000, for the IDO-CF2 scheme. The domain R = {(x, v) | |x| < 27, |v| < 5} is illustrated.

L1 — 1 L 1 L1 L1 L1 1 1 L1 1 | i 1 i L - i

Fig. 3. Contour plots of the distribution function (logarithmic plot) in phase space at six different snap times: (a) t =0, (b) t =5, (¢) t = 20, (d) t = 40, (e)
t = 80 and (f) t = 1000, for the IDO-CF2 scheme. The region of f > f;, = 1072 is shaded. The domain R = {(x, v)|[x| < 27, |v| < 5} is illustrated.

Here, we discuss the deviation from Liouville’s theorem in these numerical simulations. Note that the typical time scale of
aliasing error due to the ballistic mode excitation is estimated as ty;,s = 1/kAv ~ 102 using Av = 20/1023 and k = 0.5, which
is much longer than the time when S and A start to increase (t ~ 20). Therefore, it can be seen that the deviation originates
from the particle trapping due to the finite amplitude wave and subsequent bounce motion along the separatix. Namely,
strong distortion of the distribution function takes place near the separatrix due to the singularity of the particle dynamics
such that the particles with H > H, follows the passing orbit, whereas that with H < H, is trapped, where H, denotes the
energy of the particle on the separatrix. Then, a small element of the distribution function on the separatrix is severely
stretched, leading to a complicated folded structure, so that infinitesimally small numerical perturbations cause ergotization.
This is also illustrated by Fig. 5 where the time evolution of the entropy in Fig. 1(c) is investigated by dividing the entropy
into two regions, i.e,, |v| < 1 and |»| > 1. It can be clearly seen that the increase of entropy observed in Fig. 1(c) dominantly
originates from the region of || > 1 where the separatrix and the trapping region exist. Meanwhile, the slight increase of the
entropy is observed in the region of |¢| < 1 at around ¢ ~ 70. This may come from the numerical error for the interpolation
when the wavelength of the ballistic mode to the v-direction becomes 4, = 3Av/2. However, the rate of the entropy increase
in |v| < 1 is small (~ 20%) compared with that of the total amount. Therefore, it can be seen that the deviation from Liou-
ville’s theorem is mainly caused by the ergotization near the separatrix.

Here, we investigate the time history of Ae and As by changing the resolution in phase space in Figs. 6 and 7, where the
number of mesh points in configuration space N, is changed in Fig. 6 and that in velocity space N, in Fig. 7. As the resolution
is increased both in configuration and velocity space, the typical time scale in which S begins to increase and also saturates is
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Fig. 4. (a) Time evolutions of the field energy, kinetic energy and total energy for the IDO-CF2 scheme in 0 < t < 30. (b) Time evolution of the relative total
energy error in the early time for different numerical schemes in 0 < t < 30.
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Fig. 5. Time evolutions of the entropy in the region of |#| < 1 and that of |¢| > 1. The total one is also shown.

delayed, whereas S reaches an asymptotic value. On the other hand, the energy conservation depends on N, since it is influ-
enced by the Poisson equation.

Finally, we discuss the computational cost of each scheme. The ratio of the total time of computation for the NLD tests up
to t = 1000 is given as CIP:Spline:IDO-CF1(4th RK):IDO-CF2(4th RK) = 1:1.73:3.08:4.59. It is found that the IDO-CF scheme
has higher costs. Therefore, it may be useful to introduce the lower Runge-Kutta scheme for reducing the computational
costs. The total time of computation for IDO-CF scheme is almost proportional to the order of Runge-Kutta scheme as
IDO-CF2(2nd RK):IDO-CF2(3rd RK):IDO-CF2(4th RK) = 1:1.44:1.92.

3.2. Two-stream instability

Here, we investigated the two-stream instability (TSI) using the same four numerical schemes as were used in Section 3.1
with the initial condition:
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Fig. 6. Time evolutions of (a) the relative total energy error and (b) the deviation from the initial values of the entropy for different number of mesh points
to the x-direction.

1 v? 27
t=0,x,v) = ——10’ex (——) <l+Bcos—x>, 43
ft=0xv) = v'exp (-5 T (43)
where B= 107>, Ve = 10, (Nx,N,) = (128,511) and At = 1072 are chosen as typical parameters. In Section 3.2.1, we study
the case of L, = 4, i.e., the corresponding minimum wave number k, = 0.5 which locates around the maximum growth rate.
Therefore, in this case, only a single vortex survived in the system. Then, we extend the computational domain to L, = 207 in
Section 3.2.2 to investigate the coalescence process of vortices.

3.2.1. Single vortex dynamics

The time history of the field energy by using the IDO-CF2 scheme is shown in Fig. 8(a). After the linear growth and sub-
sequent saturation, the field energy exhibits amplitude oscillation, whereas it converges to a constant value. The distribution
functions in phase space are shown in Fig. 9 with a linear scale and in Fig. 10 with a logarithmic one. In Fig. 10, the region of
f = fmin = 1072 is shaded as in Fig. 3. After the saturation, trapping that causes a fine scale structure near the separatrix takes
place, but it also disappears during about four bounce periods as in the NLD case, leading to a coarse-grained distribution.

The total energy conservation is well satisfied as shown in Fig. 11(a). A more detailed investigation shows that the energy
is conserved in the linear and saturation phase (0 < t < 50) in the IDO-CF2 scheme as shown in Fig. 11(b), whereas other
schemes exhibit an error in the order of 10~ from t ~ 40. Thus, the IDO-CF2 scheme shows excellent energy conservation
due to the same reason as is explained in the NLD case.

The time history of the variation of the L1-norm in Fig. 8(b) also shows the same tendency as the time history in the NLD
case. Namely, the L1-norm in the Spline scheme increases in the nonlinear phase (t > 50), and then slowly falls to zero.
However, the increase is much smaller than that in the NLD case. This is due to the fact that the complex trapping dynamics
takes place around v,, = 0 in the TSI case, whereas they occur around v,, ~ 2.8 in the NLD case where the distribution is
relatively small.

Next, we investigated the entropy S (Eq. (42)) and phase space area A (Eq. (41)) in Fig. 8(c) and (d), respectively. Note that
Ais also defined as the region of f > f,;; = 1072 same as in Fig. 10. The evolutions of S and A show similar tendency as those
in Fig. 1(c) and (d), but the variations of S and A are the order of 2, which are small compared with those in Fig. 1(c) and (d).

We also investigated the energy E and entropy S for different resolutions in Figs. 12 and 13. As seen in Figs. 12 and 13(a),
Ae linearly increases after the saturation (t ~ 100). However, the total energy conservation is improved with Ny, suggesting
that the numerical error originates from the Poisson equation (Eq. (23)). On the other hand, As depends on N, and N,,.
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3.2.2. Multi-vortex dynamics and coalescence process
Next we investigated the TSI under the system size L, = 207 with the following two initial conditions:

f(t=0,x, v):fo(v)<l+3)§f cosannx>, (44)
n=1 X

f(t=0,x, U)Ifo(v){l+BMi cos (2L7Tnx+¢,,>}, (45)
n=1 X

where fy(v) = 1/v27v? exp(—v2/2). Here, ¢, represents the phase factor for the initial perturbation which is randomly cho-
sen between [0, 27]. In the following, we refer to the above two cases as case-1 (Eq. (44)) and case-2 (Eq. (45)), for which the
initial density perturbations defined as on(x,t = 0) = [(f(x, v,t = 0) — fo(v))dv are shown in Fig. 14. Namely, a single local-
ized perturbation is set at x = 0 in case-1, whereas a random distribution constructed by the phase factors {¢, } is set in case-
2. Note that the perturbation in case-1 is an even function with respect to x = 0, so that excited waves due to the TSI should
keep point symmetry to the origin, i.e., (x, 7) = (0,0) in phase space. Fig. 15 shows the time evolution of the entropy in each
case using the IDO-CF2 scheme. The contour plots of the distribution function for case-1 and case-2 are shown in Figs. 16 and
19 at six different stages, respectively.

In case-1, the mode n = 3, which roughly corresponds to that of the maximum linear growth rate, becomes dominant so
that three vortices are initially established in phase space (Fig. 16(a)). Note that a symmetric structure with respect to the
origin was confirmed, as was expected. Then, two vortices located at both sides of the origin start to merge together
(Fig. 16(b)), leading to a state consisting of two vortices with different scales (Fig. 16(c)). Through this process, the fine scale
structure associated with the topological change of the distribution is manifested. However, this structure disappears with
time, indicating that the distribution is coarse-grained (Fig. 16(d)). In this phase, the entropy also increases, as seen in
Fig. 15(a), due to the same reasons as discussed in Section 3.1. However, it is noted that such a complex merging and
coarse-grained process evolve, keeping a symmetric structure with respect to the origin.

It is interesting to investigate such a merging process in wave number space, as is illustrated in Fig. 17. In the early phase
before merging takes place, the spectra with lower mode numbers (n < 10) dominate (Fig. 17(a)), whereas higher ones in-
crease as the merging evolves (Fig. 17(b)). After the fine scale structure becomes coarse-grained, the spectra with higher
components are also reduced (Fig. 17(c)). Note that the spectra dominantly consist of even harmonics with a cosine function



K. Imadera et al./Journal of Computational Physics 228 (2009) 8919-8943

Fig. 8. Time evolution of field energy for the IDO-CF2 scheme in (al) a short time scale (0 < t < 200) and (a2) a long time one (0 < t < 1000). Time
evolutions of the deviation from the initial values of (b) L1-norm, (c) entropy and (d) phase space area for different numerical schemes (Spline, CIP, IDO-CF-1
and IDO-CF-2). Both the short time scale (0 < t < 200) ((b1), (c1) and (d1)) and long time scale (0 < t < 1000) ((b2), (c2) and (d2)) are illustrated.

shown by the red line in Fig. 17, due to the symmetric nature of the distribution. The system with two vortices (Fig. 16(d))
persists for a long time, keeping the entropy almost constant (see 200 < t < 4200 in Fig. 15(b)), suggesting that the
system satisfies a quasi-stable symmetric BGK equilibrium same as the one in the Bump-On-Tail instability. However,
the odd harmonics shown by the blue line in Fig. 17 were found to appear gradually. Then the symmetry of the system
breaks up and two vortices merge together at around t = 4300, leading to a single large scale vortex, as seen in Fig. 16(e)
and (f). Such symmetry breaking is found to originate from the excitation of odd harmonic components, as seen in
Fig. 17(d)-(f).

In order to present the physical reason for the symmetry breaking, we show the time evolution of the electrostatic fields
by dividing the fields into even and odd harmonics in Fig. 18. At first, the even components grow linearly by exhausting the
free energy of counter streaming, and then saturate at around t ~ 40. In this phase, the odd components are almost zero due
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Fig. 9. Contour plots of the distribution function (linear plot) in phase space at six different snap times: (a) t = 0, (b) t = 10, (c) t = 20, (d) t = 40, (e) t = 80
and (f) t = 1000, for the IDO-CF2 scheme. The domain R = {(x, v) ||x| < 27,|v| < 5} is illustrated.

Fig. 10. Contour plots of the distribution function (logarithmic plot) in phase space at six different snap times: (a)t =0, (b) t = 10, (c) t = 20, (d) t = 40, (e)
t = 80 and (f) t = 1000, for the IDO-CF2 scheme. The region od f > fy» = 1072 is shaded. The domain R = {(x, v)|[x| < 27, |v| < 5} is illustrated.

to the initial condition, but start to increase to the level 10~® in accordance with the saturation of even harmonics. This phase
is also coincident with that of entropy increase (Fig. 18(a)), suggesting that the ergotization process of the fine scale structure
also causes a numerical noise with a small level. Then, the odd harmonics start to grow linearly with a much smaller growth
rate (),q49 = 1/407,,.,) and reach to the same level as the even components, as seen in Figs. 17(e) and 18(b). This result indi-
cates that the quasi-stable BGK equilibrium seen in Fig. 16(c) and (d) is unstable for the perturbation of odd harmonics, so
that the small numerical noise becomes the seed of the instability, which causes a global change and/or symmetry breaking
of the distribution function. However, the dynamics after the initial setting of the noise, i.e., exponential growth, saturation,
coalescence, and the coarse-grained process, are considered to be deterministic without regard to the scheme.

In case-2, where the initial distribution is randomly set, the dynamics are qualitatively different. The most unstable mode
n =4 and subsequent four vortices are excited in the early stage (Fig. 19(a)). Then, the merging from four vortices to two
takes place at first (Fig. 19(b) and (c)). Consequently, entropy increases to the same level as that in case-1 where three vor-
tices are merged to two (t ~ 180), as seen in Fig. 15(a). Meanwhile, it was found that both even and odd components jointly
evolve and remain at almost the same level, as seen in Fig. 20. Then, the merging from two to one is successively triggered
(Fig. 19(d) and (e)), and the entropy increases again to the same level as that in case-1 where the two vortices are also
merged to one, as seen in Fig. 15(b). It is interesting to note that we finally have a similar state with a single vortex in both
case-1 and case-2 [27]. This state may correspond to a stable BGK solution, where the spectra of even and odd harmonics
exhibit a similar distribution.



8932 K. Imadera et al./Journal of Computational Physics 228 (2009) 8919-8943

a 003 . : . .
0.02 F

> - .
= 0.1 Field Energy
=

= 0

: Total Energy
< -0.0

=

-0.02
Kinetic Energy

-0.03 . . ) :
b 6107 . . : i
—Spline
410°[ ~&-CIP i
-B-IDO-CF1
_— -+-IDO-CF2

(E(t) — E(0))/E(0)

, \ 4107
40 60 80 100 0 20

Time
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4. Application of the IDO-CF scheme to particular problems in plasmas

In this section, we applied the developed IDO-CF scheme to some particular problems which are important for the study
of plasma physics, that is, phase space 2D Fokker-Planck simulation in Section 4.1, the phase space 4D Vlasov-Poisson sim-
ulation in Section 4.2 and the real space 2D guiding-center drift simulation in Section 4.3. Through these simulations, we
showed that the IDO-CF scheme is efficient and superior in studying the phenomena in high dimensional system and also
in the system with dissipation and drift motion.

4.1. Numerical simulations of the Fokker-Planck equation system

The IDO-CF2 scheme belongs to an Eulerian one and is thus easily extended to the Fokker-Planck simulation with the
governing equation given by

of (t,x,v) N ouf(t.x,v)}  HH{E(tX)f(t,x, v)} _ {8f(t,x, v)} 7 (46)

ot (924 ov ot

which is coupled with the Poisson equation, Eq. (15). Here, (9f/dt), represents the collision operator. Following reference
[28], we have employed a simplified linear collision term given by

ot x v _ | ftxv) ofuf(tx v)}
{ ot }C =k {D o2 av | (47)
where the effective collision frequency g is taken to be constant and the coefficient D is determined as
s pl/2 o pl/2
D— / / F(t.x, v)Pdxd) / / F(t,x, v)dxdw (48)
o0 J-Ly/2 o0 J-Ly/2

to ensure the energy conservation of the collision operator.

Now, we apply the central discretization to the collision operator. As discussed in Ref. [20], the central discretization can
cause numerical oscillation in the calculation of advection terms, in particular with high wave number, so that the upwind
discretization is employed in order to avoid such oscillations. On the other hand, there is no such a constraint for the collision
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Fig. 14. Initial density perturbation consisting of (a) only even parity modes keeping symmetry with respect to x = 0 (case-1) and (b) randomly distributed
even and odd modes (case-2).

terms, therefore we can utilize fourth-order central discretization. Here, we use the following fourth-order polynominal
interpolation function along the ¢-direction as

G(v; fij1.fig fijen, Gy Gyg) = a(v — v)* +b(v— 1))’ +c(v—v)* +d(v—v)) +e, (49)

The five unknown coefficients in Eq. (49) can be determined by the five constraints,

G(vj1) = fij1, (50)
G(v)) = fij, (31)
G(vj41) = fijer, (52)
Y
| war=g; (53)
v
Vi1
| cwdr =g, (54)
y
as follows:
g2 i+ 4+ fign) 150+ Gy
4A0* 4A° ’
p i —firr 20— Gigy)
A AV* ’
oo 3+ 8 +fip) 150+ Gyy) (55)
B 4A1? 4A03 '
= fiia 2 =Gy
.V A V7
e :f,'_j.
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Fig. 15. Time evolutions of the deviation from the initial value of the entropy in case-1 and case-2. (a) Short time scale (0 < t < 300) and (b) long time scale
(0 < t < 6000) are shown.

Fig. 16. Contour plots of the distribution function (linear plot) in phase space at six different snap times: (a) t = 40, (b) t = 50, (c) t = 80, (d) t = 4000, (e)
t = 4380 and (f) t = 6000, in case-1. The domain R = {(x, v) | |x| < 107, |v| < 5} is illustrated.

Then, Eq. (47) is determined by using Eqs. (49) and (55) as

(8_f) ﬁ|: (U xfl.l 1,f)]7ﬁ]+1,c,]__7é’u+2)|y 1/] 8 {yG(U ij— l7f,]7f,]+ly€u 7C1J+2)} 7/j:|. (56)

at) i

We have applied the above scheme to the NLD case, as was done in Section 3.1. The time histories of (a) field energy, (b)
L1-norm and (c1, c2) entropy are shown in Fig. 21 for § =0, 10> and 10~*, respectively. As the collision frequency f
becomes large, the field energy decreases gradually and the amplitude oscillation becomes weak. In the case of § = 107,
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Fig. 18. Time evolutions of the electrostatic field divided into even and odd components in case-1. Both (a) a short time scale (0 < t < 300) and (b) a long
time scale (0 < t < 6000) are shown. The growth rates for even and odd harmonics are given by },,., ~ 0.12 and y,4, ~ 0.003, respectively. Time evolution
of the entropy is also illustrated as a reference.
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Fig. 19. Contour plots of the distribution function (linear plot) in phase space at six different snap times: (a) t = 40, (b) t = 60, (c) t = 80, (d) t = 180, (e)
t =200 and (f) t = 6000, in case-2. The domain R = {(x, v)||x| < 107, |¢| < 5} is illustrated.
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Fig. 20. Spectral distributions of the electrostatic potential ¢(x) at six different snap times: (a) t = 40, (b) t = 60, (c) t = 80, (d) t = 180, (e) t = 200 and (f)
t = 6000, in case-2. A real part and imaginary part, which correspond to even and odd harmonics, respectively, are shown.

the conservation of the L1-norm is found to be drastically improved so that it is kept at almost a constant value, as seen in
Fig. 21(b). This is due to the fact that the fine scale structure originating from the trapping motion near the separatrix is
coarse-grained by the collisional effect. In other words, in this case, collisional dissipation which is physically determined
overcomes the numerical one. This can be seen from Fig. 21(c2) where the entropy starts to increase at t = ¢z ~ 5, which
is earlier than that in the g = 0 case, i.e., t = Tng ~ 20.

4.2. Numerical simulations of the 4D Vlasov—-Poisson system in phase space

Here, we have extended to the 4D Vlasov-Poisson equation system in phase space which is given by a normalized form
of o) o) 0Etxy)f) OE LX) _
ot

ox * ay vy ovy

OE(t.xy)  OE(txy) /”" /°° _
I e U AN SR Ly § o

: (57)
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where the distribution function has four independent variables in phase space as f = f(t,x,y, vx, y). This model has been
tested in some literatures [15,23,24] as a high dimensional case. The IDO-CF scheme can be directly applied to such a sim-
ulation by following the same numerical procedure as in the 2D case since Egs. (57) and (58) are the same as Eqs. (14) and
(15) in the form. Following the discussion by Ref. [15,23,24], we set the initial condition as,

B 1 Ui + vy 2n 2n
f(t=0,x,y, vx,vy,t)_ﬁexp < 5 {1+B(cosix+3cosgy>}. (59)

The computational domain R = {(X,y, vy, vy)|0 <X <4m, 0 <y <4m, |vi| <7,]vy| <7} is uniformly discretized with
32 x 32 x 128 x 128 meshes, and the time-step size is set as At =1/40. In this case, the evolutions of E,(ks,k,) and
E,(ky,ky) are identical due to the initial symmetry. First, we consider the linear Landau damping where B = 0.05 is given
as the initial parameter. In Fig. 22, the time evolution of the amplitude of the Fourier mode E,(k_0.5,k, = 0) is plotted in
logarithmic scale obtained by using the Spline and IDO-CF2 scheme. The IDO-CF scheme gives an accurate damping of
the amplitude of the electric field, showing that the damping rate is in good agreement with the theoretical value
(y =0.1533).

Then, the nonlinear Landau damping is considered by setting B = 0.5. The time histories of the field energy and total en-
ergy obtained by using both schemes are shown in Figs. 23 and 24, respectively. Fig. 23 shows that the time evolution of the
field energy is in good agreement with the results given in the literatures, i.e., the exponential damping of initial electrostatic
field perturbation and subsequent growth. Most importantly, the IDO-CF2 scheme has superior in preserving conservation
property for the total energy in high dimensional case, especially in linear phase as shown in Fig. 24. The mass conservation
is rigorously kept in the order of 10", These properties are almost the same as in the 2D case.

4.3. Numerical simulations of the guiding-center drift equation system in real space

So far, we have applied the IDO-CF scheme in the 2D Vlasov system with (x, zy), which is of minimum dimensionality in
phase space. However, there is no essential difference in extending the method to higher dimensional case such as 4D and 6D
as discussed in Section 4.2. Meanwhile, in the drift-kinetic and/or gyro-kinetic formalisms, which are efficient approaches in
describing complex plasma dynamics in strong magnetic field, the velocity  is no longer independent variable, but depends
on spatial coordinates through electric field and also magnetic field such as E x B and VB x B drift motion. In this case, the
semi-Lagrangian approach is hardly applied since the time splitting cannot be introduced. On the other hand, the IDO-CF
scheme is based on Eulerian approach so that it can be directly applied to such a simulation. As a benchmark test, we con-
sider the 2D guiding-center equation given by

of(t,x.y) 04(t.x.y) of (t.x,y) + 99(tx.y) of(t.xy)

at ay ox X ay (60)
where p and ¢ denote the density and the electrostatic potential, respectively, which satisfy the Poisson equation,
Po(t,xy)  Fo(tx.y)
w e P (61)

Note that the convection terms in Eq. (60) can be rewritten as the conservative form as —9/9x(pd¢/dy) + 8/3y(pd¢/dx) so
that the IDO-CF scheme can be easily applied to this system. Following the discussion by Shoucri [29], we set the initial con-
dition as

p(t=0,x,y) =siny + esin% cos(kqx). (62)

This expression represents a shear flow in the x-direction and then Kelvin—-Helmholtz (K-H) instability may be excited. The
simulation domain R = {(x,¥)]|0 < x < 10,0 < y < 27} is uniformly discretized with mesh numbers 256 x 256, and the time-
step size is set as At = 5.0 x 1072, The fixed boundary condition with zero density and potential is employed in the y-direc-
tion, i.e, p = ¢ = 0 at y = 0, 27, while periodic boundary condition in the x-direction. In this case, the linear growth rate is
approximately solved as
Im(w) V3 (\/§ >

5 Tk

(63)

k 2

We have performed the simulation with the same initial parameters as that employed in Ref. [22,30], that is, € = 0.05 and
ky =2m/L, = 2m/10.

At first, we have investigated the linear growth rate of the density perturbation for the most unstable wave number, i.e.,
k = k; by using the Arakawa and present IDO-CF schemes. The Arakawa scheme [31] is a well-known FDM for the integration
of the Euler equation for 2D fluid flows, which conserves both mean energy and mean square vorticity. In the present study,
these values correspond to enstrophy and field energy, respectively. The linear growth rate in both schemes is given by
y =~ 0.114, which is in good agreement with that obtained in Ref. [32] (y ~ 0.113). It is also consistent with the analytical
estimate given by Eq. (63) (y ~ 0.129).
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Fig. 21. Time evolutions of (a) field energy, (b) L1-norm and (c1, c2) entropy for different collisional frequency p for IDO-CF2 scheme. (c1) and (c2)
correspond to a long time scale (0 < t < 300) and a short time one (0 < t < 50), respectively.
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Fig. 22. Time evolutions of field energy in the linear Landau damping case for the Spline and IDO-CF2 scheme. Theoretical damping rate (y = 0.1533) is also

shown as a reference.
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Fig. 23. Time evolutions of field energy in the nonlinear Landau damping case for the Spline and IDO-CF2 scheme.
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Fig. 24. Time evolutions of the relative total energy error in the nonlinear Landau damping case for the Spline and IDO-CF2 scheme.
The time histories of the field energy ff|§¢|2dxdy, which is the conserved quantity of the system, is shown in Fig. 25.

The error of the field energy after the saturation is about 6 x 10~#, which is almost the same in both cases since the error
dominantly originates from the Poisson solver. On the other hand, the enstrophy is conserved in the Arakawa scheme,
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Fig. 25. Time evolutions of the relative field energy error in the K-H instability for the Arakawa and IDO-CF2 scheme.

Fig. 27. Contour plots of the density at (a) t = 100, (b) t = 400 for the IDO-CF2 scheme. The domain R = {(x,y)|0 < x < 10,0 < y < 27} is illustrated.

suggesting that the scheme is non-dissipative. Due to this property, no damping takes place even near the Nyquist wave
number, leading to the Gibbs oscillation [34]. The IDO-CF scheme can keep the enstrophy almost constant up to the end
of linear phase, however it starts to grow in nonlinear phase due to the dissipation to high-k components. The relative error
of the enstrophy is about 3 x 1072 in the equilibrium state.

The contour plots of the density at (a) t = 100 and (b) t = 400 for the Arakawa and IDO-CF schemes are shown in Figs. 26
and 27, respectively. The corresponding density cross sections at x = 5 are also shown in Fig. 28(a) and (b). Small scale cor-
rugation can be observed in the Arakawa scheme. This originates from the non-dissipative high-k components which accu-
mulate near the Nyquist wave number. This phenomena also appears in the 2D Vlasov simulation in phase space. Although
the Arakawa scheme preserves the conservation properties as Hamiltonian system, it does not ensure the positivity of dis-
tribution function, i.e., f > 0 due to the inevitable phase errors at moderate kAx and cause the Gibbs oscillation in the case
without collision. In the present case, such an oscillation does not lead to fatal numerical instability, but small scale corru-
gations are unphysically produced. The IDO-CF scheme based on the upwind discretization includes numerical dissipation
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Fig. 28. Cross sections of the density at x = 5 for the Arakawa and IDO-CF2 schemes. Two different times, (a) t = 100, (b) t = 400 are shown.

for high-k components, however, fine scale structure up to moderate wave number region can be properly captured with
negligibly small phase error.

5. Conclusions

In this paper, we have introduced the conservation form of the IDO (IDO-CF) scheme in order to solve the Vlasov-Poisson
equation which describes various linear and nonlinear plasma dynamics. The IDO-CF scheme is one of the multi-moment
schemes, and has an advantage in extending the simulation with dissipation and also source/sink terms, which are essential
for long time scale simulation. We have applied this scheme to calculate the nonlinear Landau damping and two-stream
instability as numerical tests. As measures characterizing the numerical accuracy, we have investigated the conservation
properties of the L1-norm, energy, entropy and phase space area for different schemes, i.e., the Spline, CIP and IDO-CF ones.
We have paid particular attention to the entropy, which is a measure of higher order moment related to a fine scale
structure.

The IDO-CF2 scheme, which is a strict version for evaluating the line-integrated values p, { and the cell-integrated value
M, was found to be suitable for long time scale simulation of the nonlinear dynamics with no serious numerical instability.
The energy conservation of the IDO-CF2 scheme is better than that of the other schemes, whereas the L1-norm is also well
conserved in the IDO-CF2 scheme together with the CIP and IDO-CF1 schemes. On the other hand, the entropy and phase
space area increase by a certain amount in all schemes during the saturation of linear instability and subsequent trapping
process. This originates from the ergotization of the fine scale structure near the separatrix due to small numerical dissipa-
tion. Through this process, a coarse-grained distribution function is established. Then, the entropy and phase space area
saturate and tend to converge to asymptotic values. This state is understood to be a quasi-stable BGK solution.

In order to study how the microscopic resolution influences the macroscopic dynamics, we have investigated the
symmetry of the distribution function, which is one of the most primitive macroscopic properties, by artificially imposing
a symmetry constraint to the initial perturbation of the distribution function. We found that the entropy increases when
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complex merging of vortices takes place, but the symmetric structure is kept even after this process. However, we also found
that such a symmetric BGK distribution becomes unstable for the perturbations of odd harmonics, so that the small numer-
ical noise triggered during the ergotization process ultimately causes a symmetry breaking of the distribution function. How-
ever, it should be noted that the observed secondary instability and associated merging are considered to be deterministic
without regard to the scheme.

As applications of the IDO-CF scheme to particular problems in plasmas, first we have performed a simulation with the
linear collision term, i.e., a Fokker-Planck simulation. As the increase of collision frequency, the production rate of the en-
tropy, which is physically determined, also increases so that the entropy production due to the numerical dissipation is
masked. Resultantly, the conservation of the L1-norm is found to be drastically improved since the fine scale structure be-
comes coarse-grained by collision faster than by numerical dissipation. Then we have performed the 4D Vlasov-Poisson sim-
ulation in phase space, and found that the IDO-CF2 scheme gives an accurate damping of the electric field. The scheme is
superior in preserving conservation properties for the total mass and energy in high dimensional case. These properties
are almost the same as in the 2D case. Finally, the 2D guiding-center drift simulation in real space has been performed.
The IDO-CF scheme still has good conservation properties for the field energy and enstrophy, and can properly capture fine
scale structure up to moderate wave number region with less phase error. From these applications, it is considered that the
IDO-CF scheme can be extended to more realistic simulation such as gyrokinetic Vlasov simulation [5-8] which will be re-
ported in a future publication.
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